Agile Development and Its Impact on Productivity

David Garmus
Agenda

- Characteristics of an Agile project
- Performance data on Agile projects
- When to choose Agile
Characteristics of an Agile Project

- Characteristics of an Agile project
 - Common view
 - Core practices
 - Lifecycle development

- View of an Agile project: Rigid methods have one thing in common: too much is planned in an uncertain environment at project inception.

- “XP” (the most common Agile methodology) is a lightweight methodology for small-to-medium-sized teams developing software in the face of vague or rapidly changing requirements.” – Kent Beck
Characteristics Overview

<table>
<thead>
<tr>
<th>Barry Boehm and Richard Turner</th>
<th>Agile</th>
<th>Planned (Traditional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Changeable</td>
<td>Larger Teams & Projects</td>
</tr>
<tr>
<td>Management</td>
<td>Customer is Part of Team</td>
<td>Document Plans & Requirements</td>
</tr>
<tr>
<td>Technical</td>
<td>Short Increments; Many Releases</td>
<td>Voluminous Test Cases and Plans</td>
</tr>
<tr>
<td>Personnel</td>
<td>Highly Capable; Thrive on Chaos</td>
<td>Specialists Who Thrive on Order</td>
</tr>
</tbody>
</table>
Core Practices

• Delivery of working software is the primary goal
• Active stakeholder participation
• Assimilate change easily
 – Incremental approach
 – Use of simple models to address requirements
 – Rapid feedback
 – Frequent deliverables
 – Flexible change management
• Steady development rate
• Quality through teamwork
• Direct communication
• Maximize agility through model normalization
• Retain key models for reuse
Lifecycle Development: Requirements, Design and Coding

• Small in scope
 – Less than 200 Function Points
 – Many less than 100 Function Points
• High-level business requirements
• Lack of formal documentation
 – System descriptions
 – Technical design documentation
 – Process models
 – System architectures
• Team development
 – Small, cohesive, same work space
 – Self organized and motivated
 – Driven by team dynamics vice formal process
Lifecycle Development: Testing and Implementation

• Effort not separate for each testing type/phase
• Testing occurs concurrently
• Testing by developers
• Smaller deliverables, more releases
Agenda

- Characteristics of an Agile project
- Performance data on Agile projects
- When to choose Agile
Use Measurement to Enable Comparisons Between Methods

QUANTITATIVE
- Deliverable Size
- Effort/Cost
- Duration
- Quality

QUALITATIVE
- Process
- Methods
- Skills
- Tools
- Environment

Measure how you are doing

Measured Performance

Capable Maturity

Standard of performance

Baseline of Performance

Identify what you are doing
Utilize Measurement Results in Decision Making

- Improvements resulting from current and future initiatives must be measured
- The basis for measuring improvements may include:
 - Industry data
 - Organizational baseline data

It is necessary for the organization to put a “stake in the ground” relative to current performance level in order to improve development practices.
Characteristics
- Project Type
- Platform
- Data Base
- Method
- Language

Complexity Variables
- Logical Algorithms
- Mathematical Algorithms
- Data Relationships
- Functional Size
- Reuse
- Code Structure
- Performance
- Memory
- Security
- Warranty

Metrics
- Size
- Cost
- Effort
- Duration
- Defects

Attributes
- Management
- Definition
- Design
- Build
- Test
- Environment
- Process
- Skill Levels
- Quality Practices
- Measures
Collecting and Reporting

- Identify data set (typically project oriented)
- Collect baseline data
 - Project measures (e.g., effort, size, cost, duration, defects)
 - Project attributes (e.g., skill levels, tools, process, etc.)
- Analyze data
 - Performance comparisons (identification of process strengths and weaknesses)
 - Industry averages and best practices
 - Performance modeling (identify high impact areas)
- Report results
Hours per Function Point

Average Hours / Function Point of Recent Enhancement Projects Across Different Platforms from DCG Database for Small Projects

<table>
<thead>
<tr>
<th></th>
<th>Traditional</th>
<th>Agile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Server</td>
<td>6.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Main Frame</td>
<td>8.1</td>
<td>7.0</td>
</tr>
<tr>
<td>Web</td>
<td>4.8</td>
<td>3.2</td>
</tr>
<tr>
<td>E-business Web</td>
<td>6.6</td>
<td>5.8</td>
</tr>
</tbody>
</table>
Using Historical Delivery Rates

DEFINITION

PROJECT SIZE and COMPLEXITY

FUNCTION POINT SIZE

CAPABILITY

RATE OF DELIVERY

HOURS per FUNCTION POINT

EFFORT

Schedule

Effort

Costs
Agenda

• Characteristics of an Agile project

• Performance data on Agile projects

• When to choose Agile
Which Methodology Should I Use?

Agile Methods
- Exploratory projects
- Small teams
- Participative environments
 - Experienced personnel
 - Active business partners
- Software dominant projects
- In-sourced projects
- High risk of unknown requirements

Waterfall, Iterative and Spiral Methods
- Predictive performance
- Large teams
- Highly structured environments
- Outsourced or multi-sourced projects
- High financial or safety risk
- Significant hardware integration
Do I Choose Agile or Hybrid?

• Initial arguments for selecting a hybrid (traditional) method:
 – High level of risk
 – Large size of project
 – Specified delivery commitment
 – Organizational environment

• Suggested selection process:
 – Map Agile attributes based on organization’s tolerance for risk and change
 – Some Agile practices can be transplanted to another methodology
 – Leverage best practice processes to augment method chosen
Key Attributes of Agile Projects

• The planning game
• On-site customer / user
• System metaphor
• Simple design
• Collective code ownership
• Coding standards
• Pair programming
• Continuous testing
• Continuous integration
• Small releases
• 40 hour work week

Key Attributes of Current Agile Methods

➢ Well defined
➢ Require significant discipline
Example: Team Size as a Driver for Hybrid

<table>
<thead>
<tr>
<th>Small Team</th>
<th>Medium Team</th>
<th>Large Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 People</td>
<td>12 People</td>
<td>13 or More</td>
</tr>
</tbody>
</table>

The planning game
On-site customer / user
System metaphor
Simple design
Collective code ownership
Coding standards
Pair programming
Continuous testing
Continuous Integration
Small releases
40 hour work week
Example: Financial Risk as a Driver for Hybrid

Low Financial Risk

No Impact to Accounts

Large Financial Risk

Impact to Accounts

The planning game
On-site customer / user
System metaphor
Simple design
Collective code ownership
Coding standards
Pair programming
Continuous testing
Continuous integration
Small releases
40 hour work week
Summary

• Use of Agile methods affects performance outcomes

• Choosing the appropriate methodology will maximize your delivery performance

• Agile performance can be successful
Contact Us

Email: info@softwarevalue.com

Phone: 1-610-644-2856

http://www.softwarevalue.com

@DCGSWValue
/DCGSoftwareValue
/company/DCG-Software-Value